Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhao-Lian Chu, Wei Huang* and Shao-Hua Gou

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: whuang@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.003 Å R factor = 0.039 wR factor = 0.089 Data-to-parameter ratio = 10.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Chloro-2,6-bis(hydroxymethyl)phenol

In the title compound, $C_8H_9ClO_3$, intermolecular $O-H\cdots O$ hydrogen bonds and $\pi-\pi$ interactions are highly effective in forming the three-dimensional supramolecular network, thereby stabilizing the crystal structure.

Received 27 April 2005 Accepted 3 May 2005 Online 14 May 2005

Comment

The dihydroxymethylation reaction of phenol has been investigated widely to date. A series of 4-substituted 2,6bis(hydroxymethyl)phenols have been obtained in high yields *via* phenol-formaldehyde condensation in alkaline solution (Oehler *et al.*, 1985; Perrin & Cherared, 1986; Perrin *et al.*, 1986; Crisp *et al.*, 2000; Masci & Thuéry, 2002). They are very useful intermediates in the preparation of macrocylcic Schiff bases and their metal complexes (Huang *et al.*, 2000, 2001, 2002).

In the title compound, (I) (Fig. 1), hydroxymethyl atoms O2 and O3 are at distances of 0.172 (1) and 1.302 (1) Å from the aromatic ring plane. The C–O bond lengths (Table 1) are in agreement with the corresponding ones in similar structures with different 4-substituent groups (Oehler *et al.*, 1985; Masci & Thuéry, 2002).

Intra- and intermolecular hydrogen bonds (Table 2) are highly effective in the formation of a three-dimensional network (Fig. 2). There are two sets of benzene rings, with a dihedral angle of $32.5 (1)^\circ$, each set packing in a parallel fashion by means of weak offset head-to-tail π - π stacking interactions.

The molecules form centrosymmetric dimers held together by two complementary hydrogen bonds between hydroxymethyl groups. The centroid-centroid separation between them is 3.919 (2) Å. Moreover, π - π packing interactions between the two adjacent aromatic rings belonging to different dimers are also observed, with a centroid-centroid separation of 3.803 (2) Å (Fig. 3).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Drawing of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram of (I). Dashed lines indicate hydrogen bonds.

Intermolecular O–H···O hydrogen bonds and π - π interactions are highly effective in the formation of the threedimensional supramolecular network, thereby stabilizing the crystal structure.

Experimental

The title compound was prepared according to the method of Openshaw & Roinson (1946). Analysis calculated for (I): C 50.95, H 4.81%; found: C 50.92, H 4.77%. IR (KBr, cm⁻¹): 3413 (s), 3301 (s), 2965 (m), 2913 (m), 2886 (m), 1478 (s), 1459 (s), 1332 (s), 1255 (s),

Figure 3 A perspective view of the π - π stacking in (I).

1211 (s), 1069 (s), 1011 (s), 870 (m), 717 (m), 632 (w), 598 (w). The title compound was crystallized from ethanol by slow evaporation [yield 1.55 g, 82%; m.p. 330-331 K, literature m.p. 331-333 K (Moshfegh et al., 1982)].

Crystal data

C ₈ H ₉ ClO ₃	$D_x = 1.548 \text{ Mg m}^{-3}$
$M_r = 188.60$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 634
a = 7.346 (2) Å	reflections
$b = 14.306 (4) \text{\AA}$	$\theta = 3.0-25.1^{\circ}$
c = 8.396 (2) Å	$\mu = 0.43 \text{ mm}^{-1}$
$\beta = 113.447 \ (4)^{\circ}$	T = 291 (2) K
$V = 809.5 (4) \text{ Å}^3$	Block, colorless
Z = 4	0.40 \times 0.30 \times 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.846, \ T_{\max} = 0.919$ 4259 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ wR(F²) = 0.089 S = 0.981585 reflections 145 parameters

1585 independent reflections 1217 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.049$ $\theta_{\rm max} = 26.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -17 \rightarrow 11$ $l=-10\rightarrow 10$

All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0391P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25$ e Å⁻³

Table	1	
01	1	

Selected	geometric	parameters	(A,	°).
----------	-----------	------------	-----	-----

C1-01	1.365 (2)	C6-C8	1.494 (3)
C2-C7	1.499 (3)	C7-O2	1.420 (3)
C4-Cl1	1.746 (2)	C8-O3	1.418 (2)
02-C7-C2	112.26 (17)	O3-C8-C6	110.66 (16)
C3-C2-C7-O2	-108.5(2)	C5-C6-C8-O3	8.3 (3)
C1-C2-C7-O2	68.8 (2)	C1-C6-C8-O3	-172.13 (17)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{matrix} O1-H1\cdots O2^{i}\\ O2-H2\cdots O3^{ii}\\ O3-H3A\cdots O1^{iii} \end{matrix}$	0.80 (2) 0.81 (2) 0.81 (2)	1.91 (2) 1.98 (2) 2.00 (2)	2.666 (2) 2.787 (2) 2.807 (2)	158 (2) 178 (2) 177 (2)
$C8-H8B\cdots Cl1^{iv}$	0.99 (2)	2.81 (2)	3.729 (2)	155 (1)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 2, -z + 2; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{5}{2}$.

H atoms were located in a difference synthesis and were refined isotropically [C-H = 0.91 (2) Å, O-H = 0.80 (2)-0.81 (2) Å and $CH_2 C-H = 0.96 (2)-0.99 (2) \text{ Å}].$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are indebted to the National Natural Science Found ation of China (project No. 20301009) for financial support.

References

Bruker (2000). SMART (Version 6.02) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

- Crisp, G. T., Turner, P. D. & Tiekink, E. R. T. (2000). Z. Kristallogr. New Cryst. Struct. 215, 443–444.
- Huang, W., Gou, S., Hu, D., Chantrapromma, S., Fun, H.-K. & Meng, Q. (2001). Inorg. Chem. 40, 1712–1715.
- Huang, W., Gou, S., Hu, D., Chantrapromma, S., Fun, H.-K. & Meng, Q. (2002). *Inorg. Chem.* **41**, 864–868.
- Huang, W., Gou, S., Hu, D. & Meng Q. (2000). Synth. Commun. 30, 1555–1561.
- Masci, B. & Thuéry, P. (2002). Acta Cryst. C58, 0575-0579
- Moshfegh, A. A., Mazandarani, B., Nahid, A. & Hakimelahi, G. H. (1982). Helv. Chim. Acta, 65, 1229-1232.
- Oehler, D., Thozet, A. & Perrin, M. (1985). Acta Cryst. C41, 1766-1768.
- Openshaw, H. T. & Roinson, S. R. (1946). J. Org. Chem. pp. 912-918.
- Perrin, M. & Cherared, M. (1986). Acta Cryst. C42, 1623-1625.
- Perrin, R., Lamartine, R., Vicens, J., Perrin, M., Thozet, A., Hanton, D. & Fugier, R. (1986). *Nouv. J. Chim.* **10**, 179–190.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.